

20 NASA Project Ideas for Students — Fun and Educational Projects

JANUARY 30, 2026 | JOHN DEAR

Are you a student who likes space, rockets, and science? Do you want to try projects that feel like what NASA scientists and engineers do?

This article gives you **NASA project ideas** that are easy to follow and great for school fairs, class assignments, or just learning at home. Each project is written simply so students can understand the idea, gather materials, and try it themselves.

These **NASA project ideas** cover many topics: rocketry, planetary science, space robotics, satellite technology, solar energy, climate science, and more. For every idea you will find the aim, background (why it matters), materials (easy to get), step-by-step procedure, expected results, and learning outcomes. Some projects also include ways to extend the experiment if you want to go further.

Pick any idea that excites you. Some are good for younger students and some are better for older students who like extra challenge. You do not need fancy equipment — many are doable with household items or inexpensive kits. Ready to explore like a mini NASA scientist? Let's get started!

Must Read: [20 PHP Project Ideas](#)

Table of Contents

How to choose the best NASA project idea for you

- Think about what you enjoy: building, coding, testing, or drawing.
- Check how much time you have and how complex you want the project to be.
- Make a list of materials you already have — choose a project that uses them.
- If you want to enter a science fair, pick a project that has clear measurements and results.
- Always follow safety rules and ask an adult for help with sharp or hot tools.

20 NASA Project Ideas 2026-27

1. Model Rocket Launch and Trajectory Study

Aim: Build a small model rocket and study how its launch angle affects its flight distance.

Background: Real rockets must be launched at the correct angles for satellites or spacecraft to reach the right paths.

Materials: Model rocket kit, launch pad, protractor, measuring tape, stopwatch,

notebook.

Procedure: Assemble rocket per kit instructions. Choose three launch angles (e.g., 60°, 75°, 90°). Launch the rocket three times for each angle, measure distance from launch to landing, and record time in air. Compare averages.

Expected Results: You will find an angle that gives the best distance or height.

Learning Outcomes: Understand basic physics of projectile motion, forces, and how launch angle matters.

Extensions: Add wind measurements, test different rocket weights (small masses), or design fins to improve stability.

2. DIY Mars Rover: Remote-Controlled Obstacle Course

Aim: Build a small rover model and program or control it to navigate an obstacle course.

Background: NASA rovers explore other planets, avoid rocks, and collect data.

Materials: Small RC car or Arduino/Raspberry Pi kit with motors, wheels, chassis, remote or Bluetooth module, cardboard for obstacles.

Procedure: Convert an RC car or assemble a chassis with motors. Add a microcontroller if you want autonomous control. Create an obstacle course with rocks and slopes. Practice driving or program simple commands for turning and avoiding obstacles.

Expected Results: Rover should navigate the course with minimal intervention.

Learning Outcomes: Learn basic robotics, motor control, sensors (if used), and problem solving.

Extensions: Add sensors (ultrasonic) to make the rover avoid obstacles autonomously. Log data and make maps of the course.

3. Build a Solar Oven and Test Temperature Gains

Aim: Build a simple solar oven and measure how it concentrates sunlight and raises temperature.

Background: Space missions use solar energy. On planets, solar power can run instruments and habitats.

Materials: Cardboard box, aluminum foil, glass or clear plastic sheet, black cooking pot, thermometer, tape, ruler.

Procedure: Line inner flaps with foil to reflect sunlight into the box. Place a black

pot inside and cover with clear sheet. Put a thermometer inside. Place the oven in direct sun and measure temperature every 10 minutes for 1 hour. Try different reflector angles or insulation.

Expected Results: The oven temperature should rise significantly compared to ambient.

Learning Outcomes: Learn about solar energy concentration, heat transfer, and insulation.

Extensions: Test different shapes, use multiple layers of glass, or cook small food items (with adult supervision).

4. Simulate Crater Formation — Impact Experiments

Aim: Study how craters form by dropping objects into a tray of sand.

Background: Craters on moons and planets tell us about the age and history of surfaces.

Materials: Large tray, sand or flour, small balls of different sizes and masses, ruler, camera for photos.

Procedure: Smooth sand, drop balls from different heights, and record crater diameter and depth. Keep variables controlled (same sand). Repeat several times and average results.

Expected Results: Heavier and faster objects create larger craters.

Learning Outcomes: Learn about impact energy, scaling laws, and observation techniques.

Extensions: Use layered sand to show different surface materials, or drop from an angled direction to simulate oblique impacts.

5. Design a CubeSat Model and Mission Plan

Aim: Create a simple CubeSat model and write a mission plan (what it would study in orbit).

Background: CubeSats are small satellites used by students and researchers to test instruments in space.

Materials: Cardboard or foam board for the model, markers, paper, internet/library for research (for older students).

Procedure: Build a small cube that looks like a CubeSat. Choose a mission (e.g., monitor weather, test a sensor). Write objectives, instruments needed, power

source, and how data will be sent back. Present with diagrams.

Expected Results: A clear mission plan and a model that shows understanding of satellite parts.

Learning Outcomes: Learn about satellite design, mission planning, and how science goals shape engineering.

Extensions: Add a prototype sensor (temp sensor) and simulate data collection.

6. Create a Planetary Atmosphere Model

Aim: Model how atmospheric pressure changes with altitude and how it affects boiling point.

Background: Planetary atmospheres change how liquids behave; boiling happens at lower temps at high altitude.

Materials: Pressure cooker or sealed jar setup (adult help), vacuum pump (optional) or altitude simulation app, thermometer, water.

Procedure: Boil water at different pressures (or simulate by changing pressure in a sealed jar with adult help). Measure boiling temperature. Discuss how on Mars, lower pressure makes water quickly boil or sublimate.

Expected Results: Boiling temperature drops with lower pressure.

Learning Outcomes: Understand pressure, phase changes, and why atmospheres matter for life and missions.

Extensions: Compare data to Earth, Mars, and Venus atmospheric conditions (research).

7. Study Solar Panels: Efficiency vs. Angle and Light

Aim: Measure how solar panel output changes with light angle and intensity.

Background: Solar panels power spacecraft and satellites; orientation matters to get maximum power.

Materials: Small photovoltaic cells, multimeter, protractor, lamp (or sun), stand, notebook.

Procedure: Place the panel under the lamp or sun. Measure voltage/current at different angles (0° perpendicular to light, 15°, 30°, etc.). Repeat with different light intensities or during different times of day. Plot results.

Expected Results: Maximum output when panel faces light directly.

Learning Outcomes: Learn about power, electrical measurements, and data

plotting.

Extensions: Test different panel sizes or shading patterns to simulate dust on Mars.

8. Water Filtration for Space Habitats

Aim: Design a simple water filtration system and test how well it cleans dirty water.

Background: On long missions, water must be recycled. NASA develops advanced recycling systems.

Materials: Plastic bottles, sand, gravel, activated charcoal, coffee filter, dirty water, cups, turbidity meter (optional).

Procedure: Cut bottles to create filter layers: gravel, sand, charcoal, filter paper. Pour dirty water and collect filtered water. Compare clarity and, if possible, test smell or pH.

Expected Results: Filtered water should be clearer and less smelly.

Learning Outcomes: Learn about filtration, water cycles, and why recycling matters in space.

Extensions: Add a UV sterilization simulation or test bacterial levels (with safe kits and adult supervision).

9. Moon Phase and Tides Project

Aim: Explain and model how moon phases cause tides on Earth.

Background: NASA studies the Moon and its effects on Earth. Understanding phases helps with lunar missions.

Materials: Lamp (Sun), small ball (Earth), ping-pong ball (Moon), string, dark room.

Procedure: In a dark room, set the lamp as the Sun. Move the Moon around the Earth and observe which parts are lit. Note phases and make a chart. For tides, use a water tray and show how gravity attraction (model) causes bulges.

Expected Results: Visual link between Moon position and phases/tides.

Learning Outcomes: Grasp the geometry of phases and basic gravity concepts.

Extensions: Make a poster that relates phases to dates and tides in your area.

10. Build a Weather Balloon Payload Mockup

Aim: Design and test a model payload that could be sent on a high-altitude balloon.

Background: NASA and students use balloons to carry instruments to near-space for measurements.

Materials: Small box or container, temperature sensor, pressure sensor, GPS tracker (or simulated), camera (optional), padding materials.

Procedure: Create a mock payload box. Plan locations for sensors. If allowed and safe, send a small weather balloon with a real small payload following local laws (adult supervision). Otherwise, test the payload for insulation and shock protection by dropping from heights and exposing to cold.

Expected Results: Payload should protect instruments and record environment changes.

Learning Outcomes: Learn systems design, packaging, and data collection.

Extensions: Add a simple parachute design and test descent speed.

11. Radiation Shielding Experiments

Aim: Test different materials to see how well they block radiation (simulate with safe sources like UV light).

Background: Spacecraft need radiation shielding to protect astronauts from cosmic rays and solar radiation.

Materials: UV lamp (safe), UV-sensitive beads or paper, samples of materials (aluminum foil, water in container, cardboard, plastic), ruler.

Procedure: Place UV-sensitive material under different shielding samples and expose to UV lamp for same time. Compare color change or degree of exposure.

Expected Results: Some materials block UV better; denser or thicker materials perform better.

Learning Outcomes: Understand types of radiation, why shielding is necessary, and material properties.

Extensions: Research cosmic ray shielding and compare lab results to real space needs.

12. Simulating Planetary Orbits with Computer Code

Aim: Use simple code to simulate how planets orbit a star under gravity.

Background: NASA models orbital mechanics to plan missions.

Materials: Computer, programming language (Python recommended), basic math knowledge.

Procedure: Use simple gravitational formulas and a loop to update positions and velocities (many online starter codes exist). Plot the orbits and experiment with

different masses and initial velocities.

Expected Results: Stable orbits appear when initial conditions are right; other settings cause spirals or escapes.

Learning Outcomes: Learn programming, physics of orbits, and numerical simulation.

Extensions: Add more bodies to make an n-body simulation or model spacecraft slingshots.

13. Greenhouse for Mars: Plant Growth in Simulated Conditions

Aim: Test how plants grow in poor soil and low-water conditions to mimic Mars greenhouses.

Background: Growing food on other planets will be important for long missions.

Materials: Small pots, regular soil, sand or perlite, seeds (lettuce or radish), trays, measuring cup.

Procedure: Prepare pots with different mixes (regular soil, soil+sand, soil+compost). Water the same amount and measure growth over weeks. Record height and leaf number.

Expected Results: Some mixes will support better growth; water usage affects results.

Learning Outcomes: Learn about plant needs, soil properties, and experiments with controls.

Extensions: Test LED light instead of sunlight, or try hydroponics with nutrient water.

14. Design and Test a Parachute for a Payload

Aim: Create a parachute that slows a descending payload so it lands gently.

Background: Space missions use parachutes for landings (e.g., Mars rovers).

Materials: Lightweight fabric or plastic bag, string, small weight (payload), scissors, ruler, stopwatch, tape.

Procedure: Build parachutes of different diameters and shapes (circle, square). Drop from a set height and time descent. Measure landing impact by checking payload damage.

Expected Results: Larger parachutes slow descent more.

Learning Outcomes: Understand drag, surface area, and design trade-offs.

Extensions: Use wind or different payload weights to test robustness.

15. Create a DIY Spectrometer to Study Light from Stars

Aim: Build a simple spectrometer to split light and observe spectral lines.

Background: NASA uses spectroscopy to learn what stars and planets are made of.

Materials: Cardboard tube, DVD or diffraction grating, tape, slit made from aluminum foil, smartphone camera.

Procedure: Make a narrow slit for light to enter, use DVD as the grating to separate colors, and observe spectrum using the phone camera. Record spectra for different light sources (sunlight, **LED**, fluorescent).

Expected Results: Different sources show different spectral bands and lines.

Learning Outcomes: Learn about light, wavelengths, and how scientists identify elements.

Extensions: Compare spectra of different colored LEDs and infer composition.

16. Study the Effects of Microgravity Using Drop Towers or Plane Simulations (Model)

Aim: Model microgravity experiments by using short free-fall drops or by analyzing videos from parabolic flights.

Background: Microgravity changes how fluids and objects behave. NASA studies these effects on the ISS.

Materials: Eggs, small containers, foam padding, video camera.

Procedure: Perform short free-fall drops (safe, short height) with small experiments (e.g., liquid behavior in a sealed bottle) and record. Alternatively, find and analyze public videos of parabolic flights and describe experiment behavior.

Expected Results: Observe floating or changes in liquid shape and compare to normal gravity behavior.

Learning Outcomes: Learn about gravity, experimental limitations, and how scientists adapt experiments for space.

Extensions: Design an experiment that could be performed in microgravity and explain expected outcomes.

17. Build an Earth-Moon Scale Model to Understand Distances

Aim: Build a scale model showing relative sizes and distances of Earth and Moon.

Background: Distances in space are much larger than our intuition. NASA uses scale models to teach.

Materials: Balls of different sizes (or printouts), measuring tape, open space.

Procedure: Choose a scale (e.g., 1 cm = 100 km). Calculate Earth and Moon diameters and distance at that scale. Place the models accordingly and observe separation.

Expected Results: The Moon will be much farther from Earth than expected at human scale.

Learning Outcomes: Understand spatial scale and why distance matters for missions.

Extensions: Add other planets to the scale model.

18. Study Satellite Orbits — GEO vs LEO Simulation

Aim: Compare low Earth orbit (LEO) and geostationary orbit (GEO) by simulation or demonstration.

Background: Different orbits serve different functions: LEO for imaging, GEO for communications.

Materials: String, weights, pole or rotating turntable, computer simulation tools (optional).

Procedure: Use a turntable or rotating setup to show how orbital period changes with distance. Alternatively, use online simulators to plot orbits and see signal coverage for GEO vs LEO satellites.

Expected Results: GEO satellites stay over one spot but are very far; LEO satellites move fast and cover smaller areas.

Learning Outcomes: Learn orbital altitude effects, coverage, and trade-offs.

Extensions: Design a small satellite constellation for a mission and argue choices.

19. Analyze Climate Data: NASA Remote Sensing Mini-Project

Aim: Use public climate data to study a local trend (temperature, rainfall, or vegetation).

Background: NASA satellites collect climate data used by scientists worldwide.

Materials: Computer, spreadsheet software, public datasets (older students can use NASA portals or teacher-provided data).

Procedure: Choose a dataset and time range. Plot temperature or vegetation index over time. Look for trends or seasonal patterns. Explain what might cause observed changes.

Expected Results: You may find warming trends, seasonal cycles, or vegetation changes.

Learning Outcomes: Learn data analysis, graphing, and interpretation of satellite data.

Extensions: Compare with local weather station data or repeat for different regions.

20. Create a “Life Support” Balance: Oxygen, CO₂, and Plants

Aim: Build a small enclosed system and test how plants affect oxygen and carbon dioxide levels.

Background: For long missions, closed life-support systems must recycle air and water.

Materials: Two clear jars, small plant (e.g., ivy), small animal-safe oxygen indicator (or simple pH CO₂ indicator using limewater), light source, timer.

Procedure: Place the plant in one jar and an empty jar as control. Seal both jars and place under light. Over days, observe changes in indicators or plant health. Discuss oxygen production during the day and CO₂ use at night.

Expected Results: The jar with the plant will show different gas behavior compared to control.

Learning Outcomes: Learn photosynthesis, respiration, and basics of closed ecological systems.

Extensions: Add soil microbes or a small snail (with proper care) to simulate a tiny ecosystem.

Tips for Writing Your Project Report

1. Title page: project name, your name, date, and grade.
2. Abstract or summary: 3–4 sentences about what you did and found.
3. Introduction: explain why the project matters (use simple language).
4. Materials and methods: list what you used and the steps you followed.
5. Results: show data with tables or simple charts (drawn or printed).
6. Discussion: explain what the results mean — link back to real **NASA** missions if possible.
7. Conclusion: state what you learned and propose future steps.
8. References: write where you got facts (books or websites) — this helps judges and teachers.

Safety and Practical Advice

- Always ask an adult for help with hot, sharp, or electrical tools.
- If your project includes chemicals or UV light, follow safety guidelines and wear protective gear.
- If you plan to launch rockets, balloons, or drones, check local rules and get permission.
- Keep a lab notebook to record each step and any problems you face — scientists do this too!

How to Present Your Project for a Science Fair

- Use clear headings and large fonts on display boards.
- Include photos of your work (assembly, experiments, and graphs).
- Prepare a short 1–2 minute explanation for judges: state aim, one key result, and why it matters.
- Be ready to answer questions: why you chose the idea, what surprised you, and what you would change.

Must Read: [30 LLM Project Ideas — A Student's Guide](#)

Conclusion

These **NASA project ideas** are designed to be fun, safe, and educational.

They let students practice thinking like space scientists — building models, running experiments, writing mission plans, and analyzing data.

Whether you build a small rover, simulate crater impacts, or study how solar panels work, each project helps you learn important scientific ideas and engineering skills.

Start with the idea you like most, follow the steps carefully, and add your own creativity. Good luck — and enjoy exploring space science right from your classroom or home!

 [Blog, Project Ideas](#)

JOHN DEAR

I am a creative professional with over 5 years of experience in coming up with project ideas. I'm great at brainstorming, doing market research, and analyzing what's possible to develop innovative and impactful projects. I also excel in collaborating with teams, managing project timelines, and ensuring that every idea turns into a successful outcome. Let's work together to make your next project a success!

[Gemma Project Ideas — 20 Fun, Easy, Student-Friendly Projects](#)

Best Project Ideas

Are you ready to make your big ideas happen? Let's connect and discuss how we can bring your vision to life. Together, we can create amazing results and turn your dreams into reality.

Top Pages

[Terms And Conditions](#)

[Disclaimer](#)

[Privacy Policy](#)

Follow Us

© 2024 [Best Project Ideas](#)